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In the last decades, desert ants have become model organisms
for the study of insect navigation. In finding their way, they use
two major navigational routines: path integration using a celes-
tial compass and landmark guidance based on sets of panoramic
views of the terrestrial environment. It has been claimed that this
information would enable the insect to acquire and use a cen-
tralized cognitive map of its foraging terrain. Here, we present
a decentralized architecture, in which the concurrently operat-
ing path integration and landmark guidance routines contribute
optimally to the directions to be steered, with “optimal” mean-
ing maximizing the certainty (reliability) of the combined infor-
mation. At any one time during its journey, the animal computes
a path integration (global) vector and landmark guidance (local)
vector, in which the length of each vector is proportional to the
certainty of the individual estimates. Hence, these vectors rep-
resent the limited knowledge that the navigator has at any one
place about the direction of the goal. The sum of the global and
local vectors indicates the navigator’s optimal directional esti-
mate. Wherever applied, this decentralized model architecture
is sufficient to simulate the results of quite a number of diverse
cue-conflict experiments, which have recently been performed in
various behavioral contexts by different authors in both desert
ants and honeybees. They include even those experiments that
have deliberately been designed by former authors to strengthen
the evidence for a metric cognitive map in bees.
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When bees and ants perform their far-ranging foraging jour-
neys, multiple sensory channels are at work and provide

two major navigational systems (guidance routines) with the nec-
essary input information. On the one hand, path integration
guidance (PI) (1, 2) continually updates a home vector by com-
bining compass information derived, for example, from celestial
cues (3) and the direction of the prevailing winds (4) with odo-
metric information provided by proprioceptive and optic flow
cues (5, 6). On the other hand, landmark guidance (LG) relies
primarily on terrestrial cues, which the animals acquire during
well-structured learning walks or flights (7, 8) as well as during
travels along habitual routes (9, 10). These landmark views are
stored in long-term memory, from where they can be retrieved
in flexible and context-dependent ways, compared with the cur-
rently experienced views and thus, used by view-based image
matching for computing the courses to particular goal locations
(11–16).

Extensive studies performed especially in the last two decades
in desert ants have shown that these two major routines can
operate quite independently of each other (9, 10, 17). In par-
ticular, the path integrator does not attach metric coordinates
to landmark memories acquired at particular locations (18, 19).
How then do the two navigational routines interact in steering
the animal’s courses? For instance, Cruse and coworkers (20,
21) simulated a number of behavioral results obtained in studies
on ant and honey bee navigation by implementing a decentral-
ized model based on dominance hierarchy, in which LG, when
available, suppressed PI. However, several recent cue-conflict
experiments indicate that the two guidance systems may contin-
ually cooperate in steering the animal along particularly biased
intermediate courses (22–26). Here, we ask whether a decentral-

ized architecture with a downstream combination of the guid-
ance routine outputs (26) suffices for explaining the experimen-
tal data presently available or whether it is necessary to assume
that all spatial information is centralized in a metric “cognitive
map” as claimed from studies in honey bee navigation (27).

Moreover, the compromise directions observed in cue-conflict
situations suggest that insect foragers, just as humans and mon-
keys (28, 29), might optimally integrate the noisy multimodal
information available to them (23). Optimality as defined here in
statistical terms means maximizing the certainty (i.e., reliability)
of the combined information (28–30). Accordingly, the animal
would need to know the uncertainty inherent in each guidance
routine and use this knowledge to estimate the optimal direction
to steer. As yet, this theoretical aspect has received only par-
tial attention (23, 24). In this paper, we show that a decentral-
ized architecture composed of independent guidance routines
can propagate uncertain directional information and combine
it optimally at a downstream processing stage. By using simu-
lations, we further show that this navigation model accounts for
the results of various cue-conflict experiments performed in ants
and bees.

Results
In contrast to classical Bayesian fusion of linear quantities (28,
29), the optimal combination of conflicting noisy directions is not
a weighted average of individual circular estimates. Rather, it can
be most conveniently modeled by planar vector summation if the
individual estimates are represented as vectors instead of angles
(30), where the length of each vector is proportional to the cer-
tainty of the individual estimates. We call a “belief vector” any
vector of this type, as it represents the limited knowledge—the
belief (31)—that an observer has about an uncertain direction
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(a formal definition is in Methods). Provided that two belief vec-
tors are properly calibrated (Methods), their sum is a belief vec-
tor representing the optimal direction estimate and its relative
certainty (30).

As a working hypothesis, we assume that, when insects are
on their foraging journeys, the two main navigational routines—
PI and LG—work concurrently and contribute optimally to the
directions to be steered. This hypothesis is formalized in the
model depicted in Fig. 1A. Following a decentralized approach,
the model comprises two independent navigational routines
modulated by a motivation network (Fig. 1A, yellow), which
indicates whether the animal is on its outbound (foodward) or
inbound (homeward) trip, etc. The PI, fed by odometric and
compass cues, computes a global vector (Fig. 1A, red). In par-
allel, LG relies on terrestrial visual cues for computing a local
vector (Fig. 1A, green). Considering plausible models of PI and
LG, we show that each routine can itself estimate the certainty
of the direction that it computes (Methods). In other words, both
global and local vectors are belief vectors. Thus, the sum of the
two appropriately calibrated vectors—the travel vector (Fig. 1A,
gray)—defines the optimal direction to steer.

Both guidance routines can be idealized by static fields of
belief vectors—the global and local fields (Methods). The global
field derived from our PI model points to the PI-based goal loca-
tion (e.g., the fictive home). We propose to design the local field
as a superposition (optimal combination) of elementary fields
among two types—place and route fields—as needed to reflect
the forager’s visual experience of the environment. The magni-
tudes of the global and elementary local fields, which describe PI

and LG certainties, are idealized by simple radial functions (Fig.
1B) (Methods). In this context, optimal courses are simulated by
random walks oriented by the optimal field (i.e., the superposi-
tion of the global and local fields by means of belief vector sum-
mation) (Fig. 1C).

We now test whether this abstraction suffices to simulate a
number of paradigmatic cue-conflict experiments, which have
recently been performed by various researchers in ants and bees.
We start with two experiments in which desert ants displaced
to cue-conflict locations exhibit compromised homing directions.
The two experiments are complementary in so far as the impact
of either only PI or only LG was manipulated. In the first
experiment (constant LG impact), Wystrach et al. (24) trained
Cataglyphis velox ants in a scrub desert landscape along a straight
7-m path to a habitual feeder. During the tests, these ants were
captured on their way to the feeder at different distances (1, 3,
and 7 m) and released for homing at a point nearby the nest, such
that their visually familiar LG direction was in 110◦ conflict with
the PI direction to the fictive nest. Thus, only the home vector
length varied across the test conditions. In the second experi-
ment (constant PI impact), Legge et al. (25) trained Melophorus
bagoti ants along an 11-m straight path to a feeder, where they
were later captured for testing. These “full-vector ants” were
then released at one of three release points located at various
distances (4, 32, and 64 m) and directions from the nest. This
procedure resulted in cue-conflicts of about 132◦, 117◦, and 65◦

between the constant PI direction and varying LG directions.
In both experiments, other ants were captured right before they
reached the nest (“zero-vector ants”) and tested at the previous

A B

C

Fig. 1. (A) Optimal multiguidance model. Organized as two banks of procedural memories, PI and LG (red and green boxes, respectively) operate concur-
rently and independently but are orchestrated by a network of motivation units (yellow circles). This network of coupled winner-take-all layers (e.g., A–B–C)
exhibits multiple and stable activity patterns encoding various motivational states (e.g., forage outbound to food source B) in response to current context
(e.g., food required). Each memory, when activated by its motivation unit, issues a belief vector representing a direction estimate and its certainty. Being
always active, the path integrator, fed by time-compensated compass and odometric cues, maintains a geocentric home vector compared first with the goal
vector (i.e., a past home vector) and then with the current compass direction to produce the egocentric global vector. The active LG memory compares
current and learned panoramic terrestrial cues to estimate the visually most familiar direction. The resulting local vector is summed with the global vector
(gray circle) to give the optimal travel vector that steers the agent. (B) PI certainty increases in proportion to the distance to the fictive home (red square). LG
certainty decays exponentially with increasing distance to a familiar panorama (green dot). (C) Simulation of a fictional cue-conflict experiment. A random
walk (black trajectory) is directed by the optimal travel field (gray) obtained by superposing (i.e., optimally combining) the global field (red) with the local
field, itself built arbitrarily from superposing a place field (green) and a route field (in blue for clarity), as different landmarks can also be set in conflict. The
red square indicates the fictive home. The green dot indicates the visually familiar place. The blue curve indicates the visually familiar route. Fig. S2 shows
more precise 2D views of each type of vector field. integ., integrator; mem., memory.
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release points so as to control that they headed directly to the
nest when initially deprived of PI information (and thereby,
showing LG’s sufficiency and efficacy).

In our theoretical framework, both experiments can be mod-
eled by superposing the global field centered on the fictive nest
location to a place type local field centered on the actual nest
location. Thus, each condition is characterized by a different
superposition (i.e., optimal travel vector field). By regression
analysis (Methods), we find the parameter values of the model
(Table S1) for which the travel vector at the release point fits
the experimental data best (Fig. S3). For each cue-conflict (Fig.
2) and control (Fig. S4) condition of either experiment, we then
simulate a series of short random walks directed by the best-fit
optimal field. The resulting simulated mean headings do not dif-
fer significantly from the experimental ones (Watson–Williams
tests on pairwise comparisons: F < 2.83, p> 0.09), except in the
7-m condition of Wystrach et al. (24) (F1,53 =14.08, p< 0.001).
As in the experiment by Legge et al. (25), the simulated distribu-
tion for the most distant release point (64 m) is not significantly
oriented (Rayleigh test: Z =0.3, p=0.74).

Having shown that ants presumably take optimal bearings
when released at discrete cue-conflict locations, we next examine
whether they do so continually along their entire journeys. The
drifting homeward runs observed in Cataglyphis fortis under con-
tinuous cue-conflict situations provide a telling example. Bregy
et al. (22) trained ants to visit a feeder 15 m apart from the
nest. The latter was marked by an artificial beacon (black cylin-
der) located directly behind its entrance in an otherwise fea-
tureless salt-pan environment. Trained foragers were then cap-
tured at the feeder and released as full-vector ants in a distant
test area, in which a beacon identical to the training one was
placed at different positions on (Fig. 3A) or alongside (Fig. 3B)
the ideal PI homing path. In terms of vector fields, this means
that each condition features a different optimal field due to the
(mis-)alignment of the unchanged global field pointing at the
fictive nest and the local place field linked to the displaced bea-
con. As Fig. 3 shows, the model replicates well the animals’ tra-
jectories. Similar to what happens in the experiments, the virtual
ants’ lateral drifts increase as the beacon is placed closer and
closer to the fictive position of the nest (Fig. 3 B2–B5). More-
over, in nearly all conditions, the starts of search behavior (Fig. 3,
black dots) scatter in the same way as in the experiments, and the
search densities of simulated and real ants qualitatively match
(Fig. S5).

In the last account, we assess whether our navigation model
can also describe how flying foragers resolve conflicting guid-
ance information. Cheeseman et al. (27) reported successful and
robust homing performance in honeybees across a variety of
cue-conflict situations. In a couple of displacement experiments
conducted in a large, flat, and open pasture (Fig. 4A), full-vector
bees were captured at a feeder (Fig. 4A, F) to which they had
been trained and released at sites (Fig. 4A, white dots) more

than 600 m from their hive (Fig. 4A, H). The two experiments
essentially differed in so far as, at the release sites, the panorama
was either largely featureless (experiment 1) or a salient familiar
cue was present (a row of bushes running along the bees’ train-
ing path; experiment 2). Two groups of bees were tested in each
experiment: (i) control bees were simply displaced to the release
site, and (ii) clock-shifted bees underwent a 6-h anesthesia treat-
ment beforehand to shift their time-compensated celestial com-
pass (32). From both sets of experiments, the authors conclude
that the displaced bees first follow more or less their global
vector, be it clock-shifted or not, but after having “discovered
their error,” they are “equally accurately directed toward the
hive” (27).

In our simulations, we proceed as previously described by
matching the expected visual experience and PI state of each
group of foragers by global and local fields superposed accord-
ing to the different experimental conditions. This task is some-
what complicated by the fact that, for LG, the bees might have
used, in addition or arguably as part of the panoramic cues, the
local structures and patterns that were available on the ground
(27). However, except for an irrigation channel passing nearby
the hive in experiment 1, clearly used by some control and clock-
shifted bees (Fig. 4 B1 and C1), these cues were unspecified. As
a minimal assumption, for each experiment, we placed a route
field from the feeder to the hive on the straight homing path
along which the bees have been trained (Fig. 4 B and C, green
arrows). Moreover, to simulate experiment 1, another route field
(Fig. 4 B1 and C1, blue arrows) is added to account for the bees’
familiarity with the irrigation channel and any nearby salient
ground patterns.

Fig. 4B shows that, in control conditions, the simulated opti-
mally directed random walks exhibit similar distributions to those
of the bees’ trajectories. As in experiment 1, PI initially domi-
nates due to the relatively weak local field at the release point,
leading the virtual bees toward the irrigation channel’s route
field, where LG then takes over. For experiment 2, the global
and local field strengths at the release point roughly equate and
induce the simulated foragers to take average bearings until they
have come close enough to the feeder-to-hive training route, so
that from then on, LG dominates the behavior. Interestingly, our
model is able to replicate the data of the clock-shifted bees suf-
ficiently well (rates of successful returns: 17 of 20 for experiment
1 and 18 of 20 for experiment 2) when we apply two assump-
tions. The first and obvious one concerns the clock shift-induced
rotation of the global field (by 90◦ as estimated in ref. 27 and also
used here). The second implies a reduction of its magnitude (i.e.,
PI certainty) to 30% of its value in the controls, thus increasing
the scatter, especially around the release point (Fig. 4C). This is
in line with the lower precision of the initial bearings observed
in clock-shifted bees and may reflect various effects of the anes-
thesia treatment (32). In contrast to the conclusion of Cheese-
man et al. (27) that the displaced bees proceed in a stepwise

A

1 m

B

4 m

3 m

32 m***

7 m

64 m

Fig. 2. Ants’ optimal initial headings in the cue-conflict experiments of (A) Wystrach et al. (24) and (B) Legge et al. (25). Thick red and green lines indicate
PI and LG directions, respectively. Histograms indicate heading distributions. Thin lines indicate mean headings. Arcs indicate 95% CIs. Black, simulation
data; yellow, experimental data from ref. 24, figure 2C and ref. 25, figure 4 D–F. Asterisks indicate a significant difference (Watson–Williams test; P < 0.001)
between experimental and simulated mean headings in the 7-m condition of Wystrach et al. (24).
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A1A1 A2A2 A3A3 A4A4 A5A5

B1B1 B2B2 B3B3 B4B4 B5B5

Fig. 3. Ants’ continually optimal steering in the cue-conflict experiment of Bregy et al. (22). The red squares indicate PI-based fictive nest. The green dots
indicate nest-marking beacon placed along (A1–A5) or to the left (B1–B5) of the ideal home vector course. Red, green, and gray arrows indicate global,
local, and optimal fields, respectively. The small dots indicate start of search [i.e., first turn>90◦ (measured between 2-m spaced trajectory points)]. Controls
are no beacon (A1) and training-like (A4). Black, simulated trajectories; yellow, experimental trajectories from ref. 22, figure 2.

way—first, PI and second, error discovery followed by landmark-
based map reading—in our model, the guidance systems involved
in the bees’ navigational performances are continually active and
cooperate optimally.

Discussion
While finding their ways in their far-ranging foraging territories,
ants and bees take advantage of a plethora of sensory cues, be
they visual (celestial or terrestrial), olfactory, geomagnetic, wind-
borne, or haptic cues (33, 34). Recent neuroethological work has
mainly focused on how these cues are perceived and used, but
how their use is embedded in the insect’s overall navigational
toolset has remained a much debated issue. Some researchers
hold that all spatial information is finally channeled into a cen-
tral processing unit akin to “an integrated, metric cognitive map”
suited for informing the animal about where it is (27, 35). Others
have devised decentralized network architectures, in which nav-
igational routines cooperate in flexible, context-dependent ways
and at any one time, inform the animal about where to go (20,
21). By simulating the results of a number of paradigmatic behav-
ioral experiments, we support the latter view and show that opti-
mal navigation is possible without invoking a cognitive map.

Our analyses and simulations are based on the well-supported
conclusion from a large body of experimental work that insect
foragers use spatial information in the context of two major guid-

ance routines: PI and LG (10, 14, 15, 36). While the former pro-
vides the animal with a global vector pointing from the central
place, the nest, to habitual foraging sites and back to the nest,
the latter relies on visual memories of panoramic views (i.e.,
memories of how the world looks from particular locations). The
power of this LG routine is in the fact that the panoramic view
at one location will have much in common with the views taken
from locations nearby. Although broadly similar to the linear
Bayesian theory used by Wystrach et al. (24), the circular the-
ory that we used here differs in significant ways (30) relevant to
the large PI–LG discrepancies typically presented to insects in
cue-conflict experiments. In particular, either routine contributes
to the course to be steered depending nonlinearly on its reliabil-
ity and how much it conflicts with the other. For example, Fig.
S3B1 shows that the circular model is robust to large guidance
conflicts in switching its output toward the most reliable routine
(Fig. S3B1, shaded blue sigmoid) rather than smoothly mitigat-
ing both directions as the linear model does (Fig. S3B1, shaded
gray curve).

Our model is best understood when the guidance routines are
idealized by what we have called belief vector fields. It is impor-
tant to note that, although such a field may look like a map when
sampled systematically as in Figs. 3 and 4, it is anything but a
map. At any one time and location, the animal has access only
to information stored in memory that is relevant to its current

Hoinville and Wehner PNAS | March 13, 2018 | vol. 115 | no. 11 | 2827
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Fig. 4. Bees’ robust homing in the experiments of Cheeseman et al. (27).
(A) Experimental designs of experiments 1 (A1) and 2 (A2). The red squares
indicate the fictive hives. Red lines indicate predicted ideal PI courses. Aerial
imagery of the experimental site in 2008 reproduced from Google Earth
and provided by GeoBasis-DE/BKG. (B and C) For control (B1 and B2) and
clock-shifted (C1 and C2) conditions, 50%/75% probability mass contours
of homing trajectories in bees (thick/thin yellow lines, respectively) (ref. 27,
figures S4–S7) and simulations (black/gray area outlines, respectively) are
shown. Red, green, blue, and gray arrows indicate global field, feeder-to-
hive route field, irrigation channel route field, and optimal field, respec-
tively. In experiment 2, bees departed from either of two sites (white
dots), whereas only point R was used in simulations. F, feeder; H, hive; R,
release point.

motivational state (i.e., its goal) and compares it with ongoing
sensory information. It is “blind” to the rest of the fields and thus,
cannot plan ahead its path. Moreover, rather than computing
metric positions, both routines estimate directions and their cer-
tainties. Directional statistics theory applied to the model of Mit-
telstaedt (37) shows (SI Text) that PI directional certainty scales
in proportion to the direct distance from the goal (i.e., global
vector length), although the positional error grows with the path
length. This counterintuitive prediction fully fits the experimen-
tal observations of Wystrach et al. (24) (“pot” vs. control condi-
tions) but disagrees with the dependence on path length found
using their directed walk model (ref. 24, equation 2.2) and their
subsequent interpretation that ants steer heuristically rather than
optimally. Additional experiments, which systematically combine
the experimental paradigms of Wystrach et al. (24) and Legge et
al. (25), would allow us to (i) assess if, as predicted from the com-
pass’ inherent precision limit, PI certainty saturates and (ii) accu-

rately characterize LG certainty, which here has been assumed to
decay exponentially with distance. Then, it is an open question as
to how the independently estimated certainties are properly cali-
brated so as to meaningfully and optimally fuse the two guidance
outputs.

In principle, our network structure is compatible with recent
neurophysiological analyses of the computational role that two
major neuropils in the insect’s forebrain play. On the one hand,
the convergence of sky-based compass information and optic
flow-based odometric information occurs at the central complex
(a set of midline neuropils), which is highly conserved across
insect species and which may provide the insect with a com-
mon internal representation of azimuthal space (38–40). In par-
ticular, the Cartesian vector representation that we used here is
functionally equivalent to more plausible ring-like neuron repre-
sentations (41, 42). On the other hand, the mushroom bodies—
higher-order integration and association centers in the insect
brain—have all of the computational capabilities to encode large
numbers of panoramic views (43, 44). Although direct neural
pathways between these two forebrain systems have not been
found yet, it is plausible that the mushroom bodies finally pro-
vide the central complex with view-based directional outputs.

In conclusion, while previously it has often been assumed that
various guidance routines contribute to the insect’s final naviga-
tional decision in a hierarchical order or in temporal succession
(a review is in ref. 26), we now provide a body of evidence sup-
porting that all systems operate simultaneously and that, depend-
ing on the certainty and conflict of the cues involved as well as
the motivational state of the animal, their outputs are optimally
integrated. At any one time, the animal knows where to go rather
than where it is on some kind of cognitive map.

Methods
Coordinates. We model each forager as an oriented particle on the complex
plane with position x = x + iy and absolute heading φ defined in geocentric
coordinates arbitrarily attached to the environment. Any geocentric vector v
may be expressed relative to the forager frame (the positive real axis point-
ing forward) using egocentric coordinates, denoted by primes, such that
v′ = e−iφv, where eiφ = cosφ+ i sinφ is Euler’s formula.

Belief Vectors. To model uncertain directions, we use random variables dis-
tributed as (denoted ∼) the von Mises distribution (a circular analogue of
the normal distribution) (45) denotedM(µ,κ) with mean direction µ and
concentration κ≥ 0 (a circular analogue to the reciprocal of the variance).
We call a belief vector for a direction θ∼M(µ,κ) any vector θ satisfying
θ∝κeiθ . According to Murray and Morgenstern (30), if and only if two
belief vectors θ1,2 for independent directions θ1,2∼M(µ1,2,κ1,2) are cali-
brated (i.e., |θ1|/|θ2|=κ1/κ2), then the sum

θ1 + θ2 ∝κ1eiθ1 +κ2eiθ2 =κ∗eiθ∗ ≡ θ∗ [1]

is a belief vector for the optimally combined (maximum likelihood) direction
θ∗ approximatively distributed as (denoted

.∼. )M(µ∗,κ∗) with µ∗ and κ∗,
such that κ∗eiµ∗ =κ1eiµ1 +κ2eiµ2 .

Global Field. Assuming relatively low and constant compass noise, we show
(SI Text) that the biologically plausible (41, 42) PI model of Mittelstaedt (37)
computes a belief vector—the (egocentric) global vector v′PI. Moreover, in
a forager possibly displaced from xC to xR and clock-shifted by an angle
∆, PI can be idealized (SI Text) by a geocentric belief vector field—the
global field

vPI≈ xG∗ − x, [2]

where the fictive goal location is xG∗= xR + e−i∆(xG− xC). Thus, PI certainty
can be approximated by a linear radial function.

Local Field. We argue (SI Text) that the Graham–Philippides–Baddeley (46)
model, a plausible LG model requiring minimal interaction with PI only dur-
ing learning (16, 47), can be used to estimate a belief vector—the (egocen-
tric) local vector v′LG. We then propose to idealize LG by a geocentric
belief vector field—the local field vLG—obtained by superposing (i.e., com-
bined optimally using Eq. 1) a number of place and route belief vector

2828 | www.pnas.org/cgi/doi/10.1073/pnas.1721668115 Hoinville and Wehner
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fields as needed to account for the visual experience of foragers. Assuming
that LG certainty decays exponentially with increasing distance to familiar
panoramas, we model place and route fields using the respective formulas
(SI Text):

α̂∝ e−
|p−x|

d
p− x

|p− x|
, [3]

β̂∝ e−
|r−x|

d
d + z− z∗

|d + z− z∗|
u with z = (r− x)u∗, [4]

where p is the panorama-based goal location, r is the point on a route to
the goal closest to the forager location x, u is the route’s unit tangent vector
at r, the decay constant d−1 characterizes the catchment area (12) around
the place or route, and the complex conjugate of z is denoted z∗.

Optimal Multiguidance. Assuming that both v′PI and v′LG are calibrated belief
vectors, from Eq. 1, it follows that the travel vector v′T = v′PI + v′LG is a belief
vector for the optimal multiguidance travel direction ξ′ relative to the for-
ager’s absolute heading φ. Thus, optimal multiguidance can be idealized by
the superposition of the global and local fields—the optimal field

vT = vPI + vLG. [5]

Steering of the forager is performed by a stochastic adaptation of the
homing model given in ref. 42:

φ̇= kφy′T + η, [6]

where kφ is the steering coefficient, y′T = |v′T| sin(ξ′) is the imaginary part of
v′T, and η is white Gaussian noise with variance σ2. Thus, using geocentric
coordinates, we have

φ̇=−kφ|vT| sin(φ− ξ) + η, [7]

where ξ is the optimal multiguidance absolute travel direction. Hence,
according to ref. 45, φ is a von Mises process with stationary distribu-
tionM(ξ,κξ) with concentration κξ = 2kφ|vT|/σ2. That is, the shorter the
travel vector, the noisier the forager’s heading. Considering the shape of
the global field, this explains why searching behavior emerges and remains
concentrated around the PI-based goal location in absence of familiar
landmarks.

The position x of the forager moving at constant speed s is updated
according to

ẋ = seiφ
. [8]
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